
1

Hacking the Systems from Within
André Nunes da Silva

Abstract—Information security is a fundamental aspect of our
current technological society. Side-Channel Attacks allow com-
promising a device using information leaked through its physical
properties, such as the power consumption or the duration of
certain operation. On the other hand, modern processors include
power consumption sensors which can be accessed by its users.
The goal of this research is to analyse the possibility and threat of
a side-channel attack using the processors’ energy counters. This
method aims for an attack without physical access to the device,
in contrast with the usual usage of an oscilloscope. Challenges
include the much lower sampling frequency and worst resolution,
imposing new adaptations of the current attacking methods. For
this article, an Intel processor was used to analyse and carry
out a modulation attack against a simplified version of AES. Its
performance was measured and results show that a detectable
leakage exists which allows compromising the simplified version
of the algorithm, but is not enough for the real one using the
proposed method. Future evaluation of this leakage is proposed
towards other methods and algorithms.

Index Terms—cryptography, side-channel attacks, power anal-
ysis, energy-management software, running-average power limit.

I. INTRODUCTION

THE amount of available information and the connectivity
among people distinguish our era from the past. More

and more information is being stored in digital format, in an
on-going process called digitalization. At the same time, the
network connects us and increasingly our devices as well, with
the so-called Internet of Things. This makes the cyberspace
more and more relevant, valuable and real, and like in anything
that is valuable and real, threats and risks surge. This way,
Information Security rises as an extremely important area of
today’s society, being crucial for different sectors such as
communications, economics, health systems, and even our own
entertainment.

Information Security is constantly challenged by the discov-
ery of new vulnerabilities and the creation of new attacks. In
order to protect the information from unauthorised parties the
data is many times encoded or, in other words, encrypted.
Due to its importance and past study, there are widely-
used algorithms that are mathematically very secure. Given
the difficulty to break such algorithms, the current strongest
attacks do not target the algorithm itself, but its physical
implementation, that is device-dependent and consequently
more difficult to protect. These are the so-called Side-Channel
Attacks (SCAs). Examples of this kind of attacks use channels
like electromagnetic emissions, power consumption or sound
to discover the secret information.

Parallel to the increasing technology presence comes the
concern of energy usage, both from an environmental point
of view and from an economic perspective. One example of
this is the strategic placement of cryptocurrency mining farms

in colder parts of the globe in order to lower the energy
expenses related with cooling the computers. Another, being
both an example and a consequence, is the inclusion of power
meters in modern processors, in order to monitor and limit
their energy consumption. In Intel’s processors, this feature is
named Running Average Power Limit (RAPL) and is included
in all chips since the Sandy Bridge architecture. Bringing this
together with the side-channel attacks that exploit the power
consumption, the possibility of new threats arise.

II. BACKGROUND

A. Cryptography

Cryptography is the area of Information Security that deals
with protecting sensitive information from unauthorised users.
This information can be anything from resting data files, to
messages, passwords, among others. It is used everyday in
many forms of technology, like the internet, Bluetooth, mobile
telephones, wireless systems, bank ATM’s, among others;
many times without the average user even noticing it.

The means to implement cryptography are the cryptographic
algorithms. These algorithms encrypt data, referred to as
plaintexts, by transforming them into incomprehensible cipher-
texts, based on a secret value, referred to as the key. The
inverse operation, called decryption, transforms the ciphertext
back into the plaintext, that is the original data. Again, a
key is needed to perform this operation. Here, cryptographic
algorithms branch into two families: Symmetric Cryptography,
where the same key is used for encryption and decryption, and
Asymmetric Cryptography, where a key pair with two different
keys is used instead.

Contrary to cryptography there is cryptanalysis, referring to
attacks that try to recover the secret information manipulated
by a cryptographic algorithm. The most trivial attack is the
Brute Force Attack, where every possible key is tried one by
one. This attack is unfeasible for most cases, since current
algorithms usually use keys with a size of 128 or more bits
that make such search an impossible task with even the most
recent technology.

Different adversary models can be considered in cryptanal-
ysis, based on the amount of information available to the
attacker. For instance, knowing some plaintext/ciphertext pairs,
the algorithm or the key size are all variables that are consid-
ered. It is generally assumed that the attacker has a perfect
knowledge of the algorithm, and has access to the inputs
and outputs of the operations. This consists of the Black-Box
Model, and aids revealing if an algorithm is mathematically
secure, independently of the physical implementation. Adding
to that, the Grey-Box Model considers that the attacker also
has access to the physical device where the cryptographic
algorithm is implemented and to the information leaking

2

through the respective side-channels, like power consumption,
time, or radiation. This leaked information usually depends on
the data being processed, and opens a door for exploitation.

Side-Channel Attacks (SCAs) are the family of attacks that
exploit those side-channels instead of attacking the algorithm
itself. These attacks can be much more powerful than tradi-
tional Black-Box attacks. In fact, most actual cryptographic
algorithms have been broken with Side-Channel Attacks. The
technique to exploit an algorithm based on the power con-
sumption is called Power Analysis. It has been used across
different implementations, such as Smart-Cards [1] , FPGAs
[2], to even more recent smartphones [3]. These attacks are
usually invasive, meaning that the attacker requires physical
access to the chip in order to connect an oscilloscope and
make power measurements.

Advanced Encryption Standard (AES)
The AES is the most commonly used symmetric algorithm

for cryptography. It is a fixed-size block cipher, with a key
of 128, 192 or 256 bits. It consists of a loop of rounds
of a substitution-permutation network, where the operations
are sequentially applied to the original plaintext, called state,
viewed as a 4 × 4 matrix of bytes. The number of rounds
depends on the key size, being 10, 12 and 14 accordingly for
the 128, 192 and 256-bit versions, with a slightly different last
round. For each round there is a subkey (or roundkey) derived
from the main key though a key scheduler.

input : 128-bit Plaintext; 128/192/256-bit Key
output: 128-bit Ciphertext

1 KeyExpansion;
2 AddRoundKey;

3 for 1 to 9/11/13 do
4 SubBytes;
5 ShiftRows;
6 MixColumns;
7 AddRoundKey;
8 end

9 SubBytes;
10 ShiftRows;
11 AddRoundKey;

Fig. 1. AES Overview - Encryption

KeyExpansion One roundkey per round are derived from
the main key through the AES Key Schedule, which is an
algorithm that expands one key into several.

AddRoundKey Bitwise Exclusive-OR (XOR) between
State and RoundKey: State⊕RoundKey

SubBytes Substitution of each State byte ai,j based on a
fixed Substitution-Box (S-Box), in the form ai,j = S(ai,j).

ShiftRows Cyclically shifts to the left the bytes of each row
n times, being n = 0, ..., 3 the number of the row.

MixColumns Combines bytes of each column indepen-
dently based on an invertible linear transformation in the finite
field GF{28} given by a fixed matrix.

B. Architecture

The Central Processing Unit (CPU) is the component of
a computer responsible for performing instructions provided
by a program in order to do any task. This way, usual
programming languages are ultimately translated to a low-
level programming language called assembly, which has a
strong correspondence to what the computational architecture
actually does at the architectural level. This assembly code
is then assembled into executable machine code instructions
by an assembler, specific for the processor in question. Those
instructions are then executed, performing the desired tasks,
such as arithmetic operations or data manipulation. To this
logic and physical design, together with its organisation and
implementation, it is called a microarchitecture.

One important characteristic of a CPU is its clock rate,
which refers to the frequency at which the components of the
processor operate in order to synchronise them. This directly
reflects on the processing speed, as it determines the number
of instructions performed per time unit. To further increase
the performance, many computers’ have a microprocessor
chip with several processors inside them, called cores. Other
components of a typical processor include the integrated
graphics unit,the system agent, the shared last-level-cache, and
the interconnect ring which connects all the components.

Processors are designed towards an instruction set, which
represents the instructions they can perform. These instructions
are represented by a mnemonic that is possibly combined
with one or two operands, being then translated to a series
of bytes called an opcode, that generally represents a single
executable machine instruction. The operands correspond to
the places where the values used in the operation are stored,
called registers.

In order to perform the different types of instructions in the
most efficient way, a series of components exist inside the core
of a processor, separated into two main areas: the Front End
and the Execution Engine.

The goal of the Front End is to feed the Execution Engine
with a stream of operations it gets by decoding instructions
coming from memory. This pipeline acts in order, meaning
that the chronological order of the instructions is respected.
After being decoded in a series of components, instructions
are stored in the Allocation Queue, which acts as an interface
to the Execution Unit. From there on, the flow of instructions
operates in an out of order way. Here, they proceed through
more components until they reach the Scheduler, which leads
to the different Execution Units. Here, the instructions are
directed according to its operation, and executed. Finally, they
are retired in the Reorder Buffer, releasing the corresponding
resources are restoring their chronological order.

Digital circuits operate based on two levels of discrete
voltage levels, 0 and 1, usually implemented using CMOS
transistors to build logic gates. One advantage of CMOS is
the low power dissipation, due to the complementary pull-up
and pull-down network organisation, which is arranged such
that when one is activated the other is disabled, resulting in
a static consumption power near zero. The main source of
power consumption is the dynamic part, that corresponds to

3

the energy that is consumed during the transitions of state,
as a result of brief moments when both networks conduct
and the connection between the power source and the ground
is established. This way, dynamic power consumption is
dependent on the data being manipulated, including both the
flow of instructions being processed, and the operands used
in the execution units. Consequently, if the same algorithm is
executed on different pieces of data, the power consumption
is different due to the different values of the registers.

Due to the rising importance of saving energy and control-
ling its expenses, power consumption has become a critical
metric in the design and usage of electronic systems. This led
to the introduction of new components into CPUs that allow
energy and performance measurement, in order to measure or
limit the consumption as necessary. Despite their importance,
their consequences on information security are not completely
understood[4]. In Intel’s CPUs, this feature is covered by
Intel’s Running Average Power Limit (RAPL), which consists
of a set of measuring sensors and counters, as described in the
Intel Software Developer’s Manual [5]. It is included in their
CPUs since the SandyBridge microarchitecture, with slight
differences across the many subsequent ones.

The units for the power, time and energy readings vary
according with the microarchitecture, and are found in the
register MSR RAPL POWER UNIT. For example, in order to
convert an energy measure to Joules, it has to be multiplied
by 1/2ESU , with ESU being the value represented in the
bits 8 to 12 of that register. For the Skylake microarchitecture
studied in this work, the ESU has the value 14. This way, the
measures are transformed to Joules after being multiplied with
1/214 = 61 µJ. This corresponds to the minimum difference
that two power/energy samples can have, and is refereed as
the resolution. Notice that a smaller resolution allows for
more accurate measures, as smaller differences in the input
signal can be detected. This way, the raw integers stored in
the register have to be multiplied by the resolution to be
transformed in Joules.

Together with the resolution and the sampling rate, the
Signal-to-Noise Ratio (SNR) is other import characteristic
that indicates the behaviour of an Analog-to-Digital Converter
(ADC), by comparing the level of a signal to the level of the
background noise. It is given by

SNRdB = 10 log10

(
PS+N − PN

PN

)
(1)

where PS+N is the power of the meaningful signal plus
noise, and PN is the power of the noise alone. The power of
a digital signal can be calculated with

Ps =
1

N

N−1∑
k=0

|s(k)|2 (2)

with N being the number of samples of the signal s.

III. STATE OF THE ART

Power Analysis is the branch of Side-Channel Attacks in
which the channel used for exploitation is the power con-
sumption of a device. Most Power Analysis attacks are based

on acquiring power traces, which are a set of consumption
measurements taken during the execution of one cryptographic
operation. Different techniques exist to extract the sensitive
information from the power traces, branching them into Dif-
ferential Power Analysis or Template Attacks.

A. Differential Power Analysis

The first power analysis technique is Simple Power Anal-
ysis, which exploits the information available at one or few
power traces by visually interpreting it. Figure 2 illustrates
a power trace where a clear pattern is repeated 16 times,
corresponding to the 16 rounds of the DES algorithm. That
alone provides a clue on the used cipher.

Fig. 2. Power trace during one encryption with the DES algorithm on a
Smart-Card, retrieved from [6]

Kocher et al. [6] demonstrated how zooming in the plot
highlights other details that leak sensitive data. However, a
much more powerful attack is possible by statistically compar-
ing differences across several traces, with the so-called DPA.
This technique targets algorithms where the key K is split in
small parts, allowing a divide and conquer approach, such as
many block ciphers.

The success of this technique comes from modelling an
intermediate bit that depends both on a small number b of key
bits, K∗, and on the plaintext P , forming a selection function
with the form D(P,K∗). For AES, the output of the first
S-Box is a good place to target, resulting in D(P,K∗) =
S(P ⊕K∗), with S being the S-Box substitution.

Then, to perform the attack, N power traces T = T1, ..., TN
are acquired with W samples each, corresponding to the
execution of the algorithm with N different plaintexts P =
P1, ..., PN , and the same unknown key K. Let T [j] be the jth

sample of a given trace T . The power traces are separated
into two sets, S0 and S1 according to the value of the
most significant bit of the selection function output, with the
respective plaintext P and a given key part K∗ as input.

Finally, a distinguisher ∆D is applied to them. The one
used originally by Kocher et al. [6] consisted on calculating
the trace corresponding to the difference of the averages of
each set S0 and S1

∆D = S̄0 − S̄1 (3)

If the guessed key part K∗ is wrong, then the output ∆D

results in a small noise near zero, because the result of the
selection function D was different from the target for about
half of the plaintexts. However, if K∗ is correct, the output
of the selection function is the same as the computed by
the device for all the plaintexts, creating a correlation. As a

4

result, ∆D will approach the effect of the target bit on the
power consumption as N increases. The plot will be flat with
spikes in the zones where D is correlated to the processed
values. The attacker can then identify the correct key-part
K∗ by trying the method with all the 2b possibilities, and
evaluating the computed ∆D. Knowing one part of the key,
other intermediate bits can be guessed to allow discovering
the respective missing parts.

After this research work, many works were proposed to
complete and diversify this technique. Several other distin-
guishers have been compared [7, 8]. The most widely used
uses the Pearson Correlation Coefficient, p, as the distin-
guisher:

ρx,y =
N
∑
xiyi −

∑
xi
∑
yi√

N
∑
x2i − (

∑
x2i
√
N
∑
y2i − (

∑
yi)2

. (4)

For it, a Power Model is defined for estimating the power.
Because the dynamic power consumption depends on the
number of bit changes, the Hamming Distance can be used for
this model: the Hamming Distance (HD) between two binary
numbers is the number of different bits, position-wise. This
way, the Hypothetical Power Consumption can be computed
with Hn,k = HD(D(Pn,K

∗
k)) for the nth trace/plaintext

pair and kth possible key part, with 0 ≤ k < 2b. Then, for
each sample j and possible key part K∗ the Pearson Corre-
lation Coefficient ρj,k is calculated to measure the correlation
between the Hypothetical Power Consumption and the real
measures. The output is a value between -1 and 1. Higher
absolute value means that the two data sets compared have
the best correlation, while a value of zero means that there
is no correlation at all. The higher correlation between the
Hypothetical Power Consumption and the real power traces
will represent the correct key part. Similar to the DPA, after
matching a part of the key, the same method can be used to
discover the remaining parts.

B. Template Attacks

Template Attacks were introduced by Chari, Rao, and
Rohatgi [9] in 2003 and are very strong in an information
theoretic sense because all the information leaking is possibly
used, requiring samples than DPA. In contrast, the attacker
requires an exact copy of the targeted device in order to
create a model of its leakage. A typical template attack is
then composed of two phases:

1) Profiling Phase (or Training Phase). The attacker uses
his replica of the targeted device to model the leakage
regarding different operations.

2) Attack Phase. The power traces acquired for the tar-
geted device are processed and compared with the model
constructed in the first phase to obtain the secret key.

Profiling Phase
The goal of this phase is to develop a Multivariate Gaussian

Model for the power consumption associated with different

operations as accurately as possible. A large number of power
traces are gathered using the clone system corresponding to
the power consumption of the device while performing the
operations being modelled. Each operation is considered as
performing an encryption with different bits depending on a
key part K∗ and plaintext P , based on a selection function that
models part of the algorithm, similar to the one used in DPA:
D(P,K) = S(P ⊕K∗), with S being the S-Box substitution.
This way, there are 2b = 256 different operations, where
operation Oj is defined as encrypting a plaintext byte P and
respective possible key part k such that S(P ⊕k) = j. The set
of power traces acquired while performing Oj is represented
by Sj .

To reduce the dimension of the distribution, and because
most points of the power traces are not relevant since they are
not directly affected by the key, a group of N Points of Interest
(PoIs) are selected that represent the critical and key-dependent
moments of the trace. An usual method to choose the PoIs
consists of computing the square of the sum of the pairwise
differences between the average signal of each template, ∆,
and selecting only the N points at which large differences
show up. In [10] a more advanced method is proposed, using
the T-Test to successfully detect the PoIs with noisy signals.
The T-Test is a statistical hypothesis test that distinguishes two
data sets (i, j), by comparing the distance of the corresponding
means (mi,mj) and their variability (σ2

i , σ
2
j). Among various

implementations, the Welch’s T-Test is given by

tvalue =
mi −mj√
σ2
i

ni
+

σ2
j

nj

(5)

and is used when the different sample sizes and variances
are a possibility. This way, the PoIs can be detected with

∆ =

K∑
u=1,v=1

 mu −mv√
σ2
u

nu
+

σ2
v

nv

2

, u ≥ v (6)

Having chosen N PoIs, I1, ..., IN , the power traces can be
transformed by keeping only the positions related to those
points. Finally, the average, µk ∈ RN the covariance matrix
Σk ∈ RN×N are computed, defining the template of operation
Ok.

In an attempt to reduce complexity and resources, Elaabid
et al. [11] exploited the fact that the power dissipation in a
CPU can be proportionally approximated by the Hamming
weight of the computed data to reduce the number of templates
required to 9, one for each possible Hamming Weight of the
state after the S-Box. Despite this only allowing the discovery
of the Hamming weight of the key part, its exact value can be
recovered by repeating the attack with other plaintexts.

Attack Phase
Having computed the templates (µk,Σk), the probability

distribution of the noise occurring from operation Ok is given

5

by the N-dimensional normal distribution pk(.) where the
probability of observing a noise vector z is

pk(z) =
1

(2π)N |Σk|
exp

(
−1

2
z′Σ−1k z

)
, z ∈ RN (7)

with |Σk| representing the determinant of Σk, and Σ−1k its
inverse.

This way, to classify a power trace t̂ from the set Ŝ a
maximum likelihood hypothesis test is performed. For each
k ∈ [0,K[, the noise in t̂ is extracted at the N PoIs, yielding
a noise vector nk(t̂) with

nk(t̂) = t[I1]− µk[I1], ..., t[IN]− µk[IN] ∈ RN . (8)

Then, the probability to observe such a noise vector can be
computed with Equation (7). Consequently, the hypothesis k
that maximises that probability is the best candidate for the
observed trace t̂. When more than one trace is available, the
probability to be maxed is found with

Pk =
∏
t̂∈Ŝ

pk(nk(t̂)). (9)

After acquiring one byte of the key, the power traces can
be mapped to new sets according to the next key and plaintext
bytes, and the process is repeated.

C. Countermeasures

Countermeasures to side-channels can be separated into
hardware-based and software-based approaches. The first re-
lates to the root of the problem: the physical leakage of
the device. They focus on securing that no information
leaks, and therefore no more measures are necessary at a
software-level. Examples include a dual-rail technique that
spreads the complement of every signal, or the inclusion of a
noise source component to shadow any possible correlation.
On the other hand, the software-based approach consists of
algorithmic countermeasures less dependent on the device.
For example, masking consists of splitting the intermediate
values of cryptographic computation into randomised shares
to avoid dependencies between these values and the power
consumption. Despite existing countermeasures, SCAs still
present a significant threat. This is a result of improvements
to attacks that partially or totally bypass current defences, and
because countermeasures usually bring decreased performance
in terms of computational time and memory, and/or a higher
hardware space and cost.

D. Attacks based on energy measurement by software

Despite the short amount of literature regarding this topic,
studies show that arising threats exist [4, 12]. Mantel, Shickel,
Weber, and Weber [4] distinguished two secret keys of the
Rivest, Shamir and Adelman using only RAPL measures
through a modified template attack. Paiva, Navaridas, and
Terada [12] used the DRAM power consumption to cre-
ate covert channels, allowing two processes to communicate

within a supposedly isolated environment. This demonstrates
another level of relevant threats created by these features.
Finally, a relevant work was done by O’Flynn and Dewar
[13] by breaking AES using an on-board ADC on a SAML11
microcontroller without any external measuring equipment.
While not using power measuring counters as usual of desktop
computers, it consists of a type of Power Analysis attack
without physical access to the device.

IV. METHODOLOGY

This work studies the possibility of exploiting the correla-
tion between the power consumption and the processed data in
a CPU joined with its energy measuring capabilities provided
by the energy counters in order to discover secret information
related to cryptographic operations. Compared to usual power
analysis attacks where an oscilloscope is used to gather the
so-called power traces, this method has the advantage of not
requiring physical access to the targeted computer and the
possibility of isolating the core consumption by choosing the
appropriate power plane. On the other hand, the resolution is
worse and the sampling rate is significantly lower than the
clock frequency, bringing new challenges and difficulties.

Figure 3 illustrates an overview of the conceptual architec-
ture of a proposed attack, inspired by current template attacks.
This study can be separated into three steps: measuring the
capabilities of the interface, post processing the measured data
and methods to create templates, and finding methods to match
the templates and attacks to exploit those methods in order
to acquire sensitive information. The experiments are done
using Intel’s RAPL in a Skylake client microarquitecture with
a clock of 2.5 GHz.

CPU USER

Energy Register

Interface

Power Consumption
- Encryption Thread
- Sampling Thread
- Other Processes (noise)

Update
Frequency

Sampling
Frequency

Reading
Frequency

Raw Data Processing

 Templates

- Encryption Thread
- Sampling Thread

 Template

 Template
Power

Analysis
 Trace

Hamming
Weight

Fig. 3. Conceptual architecture of a possible attack

A. Using RAPL for sampling Power Consumption

Power consumption related to data computed at the cores
is measured at the PP0 domain, and the respective values
are stored in the 32-bit register MSR PP0 ENERGY STATUS.
Since the relative differences of the values alone contain the
leakage, the raw readings from the register are used without
any conversion to a unit.

To read the MSR register, some interface must be used to
provide those values to the user. For this article three interfaces
were compared: Intel’s PAPI, Power Capping Framework
(powercap), and a Custom Framework made by IST students.
For each, an acquisition loop was performed by reading the

6

register at the maximum possible rate in order to catch all the
updates. The frequency at which the interface is able to read
the register is called Reading Frequency, and it represents the
computational resources and time used by the interface to read
the register, resulting in undesired overheads. The rate at which
updated measures are acquired is called Sampling Frequency,
representing the samples of energy values per time unit.

When doing this type of acquisitions, special attention
should be given to minimise resources used and noise intro-
duced. For example, the measured values should be stored
in an static array in order to avoid allocating memory in run
time, which is a computationally expensive function. Also, the
assembly code should be inspected to assure that the compiler
is not removing important instructions being measured that
it might consider useless. Looking at Table I it is seen how
the Custom Framework achieves higher sampling and reading
rates as a result of being lighter than the others. It is therefore
used for the remaining readings.

Interface Reading Sampling

PAPI 1.00 kHz 575.35 kHz
Powercap 17.09 kHz 103.79 kHz
Custom 17.22 kHz 1033.12 kHz

TABLE I
SAMPLING AND READING FREQUENCIES ACROSS INTERFACES.

To measure how the power measurements relate to the
activity happening in the cores the SNR is calculated, with the
noise measurements taken while the CPU is as idle as possible
and the signal values measured while the computational load
is at its highest value. Being a computer that hosts an operative
system, it is impossible to eliminate all side tasks, and some
system calls and processes will remain, which will also take
place during encryption operations. On the other hand, a
high computational load is achieved with the dd command
to shift a number of zero bytes in virtual memory by calling it
with /dev/zero as source and /dev/null as destination.
Figure 4 shows the energy measurements during idle time.

0.0 0.2 0.4 0.6 0.8
Sample Window 1e7

2.5

3.0

3.5

4.0

4.5

En
er

gy
 R

ea
di

ng

Idle Energy

Fig. 4. Moving average of idle energy readings during 5 minutes, with an
average window of 50 samples.

An aspect of the graph that stands out is the existence of
spikes. In order to find out why those happen, a zoom is
applied to the plot of the raw samples in the position of those
spikes. This is done in Figure 5 to the spike of the upper plot
pointed by the arrow.

It is possible to see that the spikes are a result of consecutive
higher samples. It is difficult to track the exact reason for this
happening. This experience was repeated, and the positions of

6095500 6097000 6098500
Sample Window

2.5

3.0

3.5

4.0

4.5

En
er

gy

Idle Energy Moving Average

6095500 6097000 6098500
Sample

2

4

6

8

10

12

En
er

gy

Idle Energy (Raw Data)

350 375 400 425 450 475
Sample +6.095e6

0

2

4

6

8

10

En
er

gy

Idle Energy (Raw Data)

Fig. 5. Different zooms of the pointed energy spike. Direct zoom of the
average window of 50 samples (left), raw samples of the same zone (middle),
detail of the pointed spike of the middle plot (right).

the spikes shifted, which led to believe this is due to system
calls and unavoidable for now. Three possible ways to solve
this occurrence are simply filtering them out, saturating them
by imposing a limit on the value they can take, or, a more
complex option is to detect them and take it into account
in following calculations. For now the first option is chosen,
leaving the others to future research.

Another important source of invalid data is what is refereed
as machine warm up, referring to the fact that the beginning of
an acquisition tends to have its values decreased and gradually
increasing to the established trend afterwards. After noticing
that this happens due to an idle time between acquisitions,
during which no measures were being acquired, more attention
was given to this issue.

This effect is illustrated in Figure 6, where it is seen that
the longer the thread is idle via a sleep function, the lowest
the energy values become when it resumes computations.
This leads to a longer time reaching the trend value, that is
maintained from that point forward. It is important to underline
that during the sleep time there are no energy recordings. This
means that the expected plot would not show the low-energy
moments at all. Also, the first sample after the idle time is
removed in order to avoid any contamination of a very low
sample to the moving average window. The explanation of this
effect is not found in literature, and can be further studied if
future research. This way, the used method to tackle this effect
was to avoid idle times between acquisitions and eliminate the
first samples of every acquisition during post-processing.

0 10000 20000 30000 40000
Sample Window

1740

1750

1760

1770

1780

1790

1800

En
er

gy

Fig. 6. Machine Warm Up - the encryption loops seems to spend less power
during the beginning, proportionally to the idle time before. Red bars represent
increasingly longer idle moments.

Computing the SNR value with Equation (II-B) resulted in
a value of 21.98 dB, which is considerably low for power
measuring, but still allows for a possible leakage.

7

B. Leakage Identification

An operation is leaking information through the energy
registers if such information can be used to distinguish two
similar algorithms applied on different pieces of data. In order
to identify leakage and define further settings and parameters,
a simplified AES is defined, allowing a consecutive increase
in difficulty towards a real scenario and consequently a way
of measuring the threat an attack provides. The conditions are
as follows:

1) 1 round (instead of 10) to allow the exposure of the
leakage of the first S-box without the further rounds
hiding it.

2) 16 similar bytes in the keys and plaintexts - Amplifies
the leakage of the S-box by 16.

3) 2 possible Hamming weights of the values loaded from
the S-box (0x00 and 0xFF)

The values that load 0x00 and 0xFF from the S-box are
0x52 and 0x7D. Fixing the key k at a value, for example
0x50, the plaintext p is chosen such that p⊕ 0x50 = 0x00
and p⊕ 0x50 = 0xFF. This results in p1 = 0x02 and p2 =
0x2D.

With the goal of obtaining the testing data to create tem-
plates, the power consumption profile of a loop of encryptions
is acquired under the simplified scenario conditions. In order
to produce the best results, the two plaintexts should be
alternating after some amount of samples are obtained, so that
outside effects such as the room temperature, usage of the
cores, or any other noise affects in a more similar way the
various acquisitions. The most promising results were found
using values of around 5 minutes, as seen in figure 7.

0 5000 10000 15000 20000
Sample Window

1790

1795

1800

1805

En
er

gy
 R

ea
di

ng

Load 0x00
Load 0xFF

Fig. 7. Energy Moving Averages of loading 0x00’s vs loading 0xFF’s.
Window of 55k (non-grouped) samples. It is visible that one operation
consumes more energy than the other.

One aspect that arises is that the energy resolution is very
high for the signals being acquired, resulting in the measured
values being low and belonging to a small group of discrete
values. Grouping by summing (or averaging) δ consecutive
samples increases this resolution, at the cost of reducing the
number of available samples. While this does not necessar-
ily increase the chances of exploiting the measurements, it
facilitates the filtering of outliers and allows for a better
visualisation and demonstration of the leakage.

The histograms of Figure 8 show the corresponding distribu-
tions of the previous plots. The samples are grouped in groups
of 256 and filtered by three standard deviations from the
mean. The two distributions are easily distinguished, exposing
a leakage of information.

1780 1790 1800 1810 1820
Energy Reading

0

200

400

600

800

1000

1200

1400

Am
ou

nt
 o

f S
am

pl
es

Load 0x00
Load 0xFF

Fig. 8. Energy histograms of loading 0x00s vs loading 0xFFs.

After detecting this leakage, the experiments were repeated
in another architecture in order to study possible RAPL
differences across processors. This time, it was used an Intel
i7-8700k with 6 cores and a base clock frequency of 3.7 GHz,
both resulting in an overall increase of power consumption.
This higher clock also led to an increased Reading Frequency
of 1400.41 kHz, while the Sampling Rate was approximately
the same, with a value of 17.336 kHz. These results match
the expected ones. To study the leakage in this machine, the
simplified scenario is used again. From the results illustrated in
Figure 9, different observations are taken. Besides the widest
span in the x-axis of the histograms, there is a significant
deviation from a normal curve happening in the both cases.
While being difficult to track the exact explanation of this, it
is most likely that it happens due to other processes of the
system and not from the data manipulation itself. Secondly is
the fact that unlike the previous results for the other machine,
the histograms mode value overlap each other. These results
were repeated and this was observed every time. The proof of
leakage does not seem to happen so firmly in this case. One
possible reason is the increase of the number of cores, making
the parallel computations of other processes overshadow the
leakage resulting from the data processed in one of the cores.

2150 2200 2250 2300 2350 2400
Energy Readings

0

200

400

600

800

1000

1200

Am
ou

nt
 o

f S
am

pl
es

Load 0x00
Load 0xFF

Fig. 9. Energy histograms of loading values with Hamming weights 0, 4 and
8, in a different machine. The distributions are not visually distinguished in
this case..

This reflects how the targeted processor is an important
feature of a possible attack, as they provide different levels
of security against it. The initial machine is used for the
remainder of this work.

C. Templates Matching

In order to match a trace to one of the possible templates, it
is necessary a function that takes as input a set of distributions
(templates and trace), and returns values that reflect their
similarity, with the template that represents better similarity

8

with the trace being the matched one. While this function’s
goal is to guess to which template the trace belongs, it can
also be used to characterise and evaluate different parameters
of the acquisition.

One possible approach to output the similarity across dis-
tributions is to use the T-Test formulated in Equation (5),
which has the advantage of permitting different sizes of the
distributions. This operation returns a value referred to as the
tvalue, that represents the similarity between those data-sets,
being zero when they are completely similar, and increasing
in absolute value as the similarity drops. This value is usually
compared against a critical value table to determine if the data-
sets differ, or if that difference is due to the effect of chance.
For the sake of simplicity, it is common practise to use the
value of 4.5 to draw the line that distinguishes different sets
from similar sets [14]. Since it is desired to always select one
template to match the trace, the proposed matching function
selects the template that together with the sample trace results
in the lesser tvalue.

One last requirement to evaluate the different parameters
and conditions is a way to numerically measure the perfor-
mance of that acquisition, based on the acquired samples.
This performance reflects how well can the different templates
be distinguished and each trace matched with the respective
template, using the already mentioned T-Test method. The
method used generally in cryptanalysis is to do the whole
attack with those acquisitions and check the position of the
correct key in a ranking of keys ordered by the probability
of being correct, returned by the algorithm. This allows an
intelligent and feasible brute force search even if the correct
key is not the first in the ranking.

However, in this case in particular, the probability of finding
the correct key strongly depends on the number of plain-
texts used for encrypting, and therefore it using that metric
would require making acquisitions with a large number of
plaintexts for each key guess. What can be used instead,
being a common practise in classification problems, is the
confusion matrix. The confusion matrix is a square matrix
that describes the performance of a classification model by
displaying the probability of choosing each predicted class
(template) according to each actual class (trace). This way,
the position i, j has the probability of matching the trace
j to the template i. Using this for performance control has
the advantage of having parameters that reflect aspects of the
classification model in a single value, such as the F1 score
and the Matthews Correlation Coefficient.

To calculate the confusion matrix, suppose an acquisition
test with two resulting distributions, one with the Hamming
weight of the S-box output as 0, and the other as 8. For each
distribution, the samples related to 1 minute are considered
the attacking trace, and the remaining are considered the
template. Performing the matching function with one of the
two attacking traces results in two t-values, that represent the
possibility of that trace belonging to either template 0 or to
template 8. Doing it for the other trace creates another row of
two more values, creating the matrix at Table II (left). Using
different groups of samples for the attacking trace and for the
template allows this experience to be repeated for statistical

purposes. Assuming that the template with the smaller t-value
of each trace is the matched one, the confusion matrix at Table
II (right) is created, providing the mentioned statistical values
for the probabilities of matching each template to each trace.

Template 0 Template 8

Trace 0 2.135 7.955
Trace 8 17.113 1.468

Template 0 Template 8

Trace 0 0.88 0.12
Trace 8 0.00 1.00

TABLE II
EXAMPLES OF T-TEST RESULTS (TOP) AND CONFUSION MATRIX (DOWN)

FOR TEMPLATES 0 AND 8.

D. Attacks and Performance

The algorithm depicted in Figure 10 illustrates an attack
highlighting how knowing the Hamming weight of the S-box
output through the previous matching templates function can
be used to recover the key during the attacking phase.

Input: HW - Possible Hamming Weights P -
Number of Plaintexts K -
Possible Keys

Profiling Phase :

1 for h ∈ HW do
2 Tp[h] = createTemplate();
3 end

Capture Traces :

4 for i ∈ 0, ..., P do
5 Tr[i], Pt[i] = Encrypt(pt = rand());
6 end

Attacking Phase:

7 for i ∈ 0, ..., P do
8 h = MatchTemplates(Tp, Tr[i]);
9 for k ∈ K do

10 if HW (SBox(k ⊕ Pt[i])) == h then
11 score[k]++;
12 end
13 end
14 end

Fig. 10. Attack against AES

The first part of the attack consists in creating templates in
the cloned device owned by the attacker. On the second part,
the attacking traces are captured on the machine under attack.
Finally there is the attacking phase, when the attacker tries to
recover the secret key part from the h generated templates and
the P pairs of captured traces and corresponding plaintexts.
For that, the function MatchTemplates takes the templates and
each attacking trace to guess h, that is the Hamming weight
of the output of the AES S-box under attack. Knowing that
value, one can iterate all the possible keys and calculate which

9

of them would, XORed with the plaintext associated to that
trace, load a value from the S-box with that same Hamming
weight h. The score of such keys is incremented, and the loop
continues for the next trace/plaintext pair.

At the end of that cycle, each key will have a score. Since
the used key was the same for all the iterations, assuming that
the matching function classifies correctly, there will be one
possible key with the maximum score similar to the number
of iterations, which is the correct key. The usage of a score
allows for an intelligent brute force search in case the accuracy
of the templates matching function is not 100%.

The number of available pairs of plaintexts/traces can
compensate for a poorer classification accuracy. In order to
effectively study this effect, a simulation is performed with
a function that mimics the template matching according to
an error parameter, Pe, indicating the percentage of choosing
a wrong template given a trace and the group of possible
templates. Due to the constraints of the simplified scenario, the
generated plaintexts have to result, after being XORed with the
key, in a value that loads from the S-box a byte with a valid
Hamming weight. This way, assuming the Hamming weights
0, 4, and 8, there are 1 + 70 + 1 = 72 available plaintexts.
Figure 11 shows the evolution of the key position according
to the error rate and number of plaintexts, for this scenario.

10 20 30 40 50 60 70
Number of Plaintexts

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

0

1

2

3

4

5

Fig. 11. Logarithm of key position per error rate and number of plaintexts
for templates with Hamming weight 0, 4 and 8.

One can see that increasing the number of plaintexts leads to
higher chances of finding the correct key, as the corresponding
position is lower. Here, the position means the number of keys
with a score higher or equal to the correct key. Despite the fact
that lowering the error rate contributes to finding the correct
key, it is relevant that such a key can be found even with
error rates higher than the template matching function, given
a feasible number of plaintexts.

Upon successfully attacking the simplified scenario, the
difficulty is increased in three orthogonal ways in order to
evaluate how much of a real threat this attack constitutes.

Adding Hamming Weights
As more Hamming weights and the corresponding templates

are included, it gets more difficult to match them. This happens
firstly because there are more classifying options, and secondly
because they are more similar to each other. With 5 different
Hamming Weights the error could still be contoured by a
realistic amount of plaintexts. However, with all the nine

Hamming Weights the error rate is particularly high and most
of the traces are wrongly classified. While these difficulties
compromise the attack against a system using the real AES,
ideas exist to contour them. An example includes exploiting
the fact that the miss-classifications tend to hit a template with
an adjacent Hamming weight.

Adding Different Bytes
In the simplified scenario, the keys and the plaintexts have

all the 16 bytes alike. This means that the leakage in a S-box
is being multiplied 16 times. Such does not happen in a real
case. Besides that, it is necessary to isolate small parts of the
key to make an attack feasible as the solution proposed is to
randomise the outputs of some S-boxes, ideally all but one,
so that the non-randomised one can be isolated. This is usual
practise in cryptography as the random values tend to null
each other with the increment of samples, and randomising
certain S-boxes outputs is easily achieved by randomising the
correspondent part of the plaintexts. Actually, it is fundamental
to distinguish every singular byte, as attacking the bytes in
pairs would result in a search space of 8 × 216 = 524238
which requires an unfeasible amount of plaintexts. While
using 8 random bytes the error rate of the templates matching
was still sufficient, with the necessary 15 random bytes the
classification was similar to a random one.

Increasing Number of Rounds
By increasing the number of rounds, the leakage at the

S-boxes of the first round becomes overshadowed by the
other rounds. Unlike usual attacks, the time resolution of
the acquisitions does not permit isolating certain parts of the
trace. However, since the rows and columns are mixed in the
rounds of AES, the previously-mentioned randomised bytes
will create whole random states after the first round, which
will null each other, being the only non-random component
the S-box operation of the first round, which leaks the key
information. However, the increase of rounds resulted in too
many miss-classifications.

V. CONCLUSIONS

Information security is an extremely important aspect of
today’s modern society. The evolution of technology results
in safer solutions, but also brings new vulnerabilities that can
be exploited. Extreme precaution must be taken, specially for
widely-used and trusted devices such as computer’s proces-
sors, namely Intel’s. Side-channel attacks in particular require
an extra attention given their difficulty to detect and prevent,
in conjunction with their dangerous potential.

This research builds a foundation to the study of software-
based energy measuring side-channel attacks against AES,
in an attempt to completely recover the secret key from the
power consumption profiles. The characterisation of RAPL as
an ADC across different interfaces showed that PAPI is not
suitable for fast acquisition, since it limits the information
provided by the RAPL registers. Instead, a custom-made
framework is recommended.

10

A simplified scenario was designed in order to perform
experimental work aiming the Advanced Encryption Standard.
Analysing the power profiles of encryptions under such con-
ditions concluded that there is a power leakage that can be
detected with RAPL and possibly exploited. This is related to
the processed data and can compromise its security. A method
was created to compare the power profiles acquired during the
encryption operations with previously acquired ones, recalling
the template attacks. This allowed discovering the Hamming
weight of the value loaded from the first S-box during the
encryptions. Then, an algorithm was designed to use it together
with the original plaintexts to successfully obtain AES secret
key parts under the simplified scenario conditions.

A full key recovery was possible in simplified scenarios but
seemed very difficult for now to be done with the proposed
approach in a realistic scenario. These difficulties come from
the trouble of detecting a smaller leakage, as a result of
randomising a big portion of the plaintext. This is a crucial
step to recover the key, as it is how the bytes are isolated in
order to attack only a certain key part, and how the energy
consumption from the consequent rounds is prevented from
hiding the first round’s leakage. While the theory suggests
that it can be done, better acquisitions would be required to
do so. Secondly, there is the classification performance, that
although it proves capable of distinguishing some templates, it
does not allow a correct matching of all the 9 templates with
a limited or feasible number of power traces and plaintext
pairs. Future upgrades to software-based energy measurement
tools must have information security taken into account. For
example, refinements in the resolution or sampling rate to this
ADCs can be enough to improve the quality of the acquisitions
in order to make a full key recovery possible.

VI. FUTURE WORK

Multiple times it happened that a branch of ideas happened
and it was required to choose a path to stick to in order
to proceed with the research. Different algorithms can be
analysed for this end, as there many till used today simpler
than AES. The same applies for the used architecture. The
usage of multiple threads to allow encrypting and measuring at
the same time was left unexplored, as well as using a periodic
operation to measure the background noise and using it to
adjust the captured values and its resultant distribution. In
terms of template matching, a way to contour the difficulties
related to the increase of the number of Hamming weights
is proposed, as the miss-classifications have a tendency to
hit templates adjacent to the correct one. Finally, being a
classification problem, it would be a great contribution to see
the performance of artificial intelligence and machine learning
algorithms for such a task.

REFERENCES

[1] S. Mangard, E. Oswald, and T. Popp, Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer,
01 2007.

[2] S. B. Örs, E. Oswald, and B. Preneel, “Power-analysis
attacks on an fpga - first experimental results,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2003,

C. D. Walter, Ç. K. Koç, and C. Paar, Eds. Springer
Berlin Heidelberg, 2003, pp. 35–50.

[3] L. Yan, Y. Guo, X. Chen, and H. Mei, “A study on power
side channels on mobile devices,” 12 2015, pp. 30–38.

[4] H. Mantel, J. Shickel, A. Weber, and F. Weber, “Vulnera-
bilities introduced by features for software-based energy
measurement,” Department of Computer Science, Tech-
nische Universitatät Darmstadt, Germany, Tech. Rep.,
2017.

[5] Intel Architecture Software Developer’s Manual, Volume
3: System Programming Guide, Intel, 2009.

[6] P. Kocher, J. Jaffe, and B. Jun, “Differential power anal-
ysis,” Advances in Cryptology - CRYPTO99, p. 388–397,
1999.

[7] E. Oswald, L. Mather, and C. Whitnall, “Choosing dis-
tinguishers for differential power analysis attacks.”

[8] H. Maghrebi, O. Rioul, S. Guilley, and J.-L. Danger,
“Comparison between side-channel analysis distinguish-
ers,” in Information and Communications Security, T. W.
Chim and T. H. Yuen, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 331–340.

[9] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in
Cryptographic Hardware and Embedded Systems - CHES
2002, B. S. Kaliski, ç. K. Koç, and C. Paar, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 13–28.

[10] B. Gierlichs, K. Lemke-Rust, and C. Paar, “Templates
vs. stochastic methods,” in Cryptographic Hardware and
Embedded Systems - CHES 2006, L. Goubin and M. Mat-
sui, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 15–29.

[11] M. Elaabid, S. Guilley, and P. Hoogvorst, “Template
attacks with a power model.” IACR Cryptology ePrint
Archive, vol. 2007, p. 443, 01 2007.

[12] T. B. Paiva, J. Navaridas, and R. Terada, “Robust covert
channels based on dram power cnsumption,” in Infor-
mation Security, Z. Lin, C. Papamanthou, and M. Poly-
chronakis, Eds. Springer International Publishing, 2019,
pp. 319–338.

[13] C. O’Flynn and A. Dewar, “On-device power analysis
across hardware security domains: Stop hitting yourself,”
IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, vol. 2019, pp. 126–153, Aug. 2019.

[14] T. Schneider and A. Moradi, “Leakage assessment
methodology,” in Cryptographic Hardware and Embed-
ded Systems – CHES 2015, T. Güneysu and H. Hand-
schuh, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2015, pp. 495–513.

	Introduction
	Background
	Cryptography
	Architecture

	State of the Art
	Differential Power Analysis
	Template Attacks
	Countermeasures
	Attacks based on energy measurement by software

	Methodology
	Using RAPL for sampling Power Consumption
	Leakage Identification
	Templates Matching
	Attacks and Performance

	Conclusions
	Future Work

